Elliott–Halberstams förmodan
Inom talteori är Elliott–Halberstams förmodan en förmodan om primtalens fördelning i aritmetiska följder. Den är uppkallad efter Peter D. T. A. Elliott och Heini Halberstam.
Låt vara antalet primtal mindre eller lika stora som x. Om q är ett positivt heltal och a är relativt primt till q definieras som antalet primtal mindre eller lika stora som x som är lika med a modulo q. Dirichlets sats om aritmetiska följder säger att
där a och q är relativt prima och är Eulers fi-funktion. Om vi definierar feltermen
där max är över alla a relativt prima till q säger Elliott–Halberstams förmodan att för alla θ < 1 och A > 0 finns det en konstant C > 0 så att
gäller för alla x > 2.
Förmodandet bevisades för alla θ < 1/2 av Enrico Bombieri och A. I. Vinogradov (se Bombieri–Vinogradovs sats, ibland bara "Bombieris sats"). Det är känt att förmodan inte gäller vid θ = 1.