Polynomring

Från testwiki
Version från den 16 juni 2022 kl. 18.27 av imported>Nickebeeee (growthexperiments-addlink-summary-summary:2|1|0)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök

En polynomring är inom matematik en ring konstruerad från en annan ring som kan ses som mängden av alla polynom i ett fixt antal variabler med koefficienter i den ursprungliga ringen.

Polynomringar i en variabel

Ett polynom i en variabel x med koefficienter i en ring R är ett uttryck på formen:

p=anxn+an1xn1+...+a2x2+a1x+a0=k=0nakxk

där an,an1,...,a1,a0 är element i R. Med graden av p avses det största k sådant att xk har en nollskild koefficient.

Polynomringen över R, betecknad R[x] mängden av alla polynom med koefficienter i R. R[x] är då en ring med operatorerna addition och multiplikation definierade enligt:

(k=0nakxk)+(k=0nbkxk)=k=0n(ak+bk)xk
(i=0naixi)(j=0mbjxj)=k=0m+n(i+j=kaibj)xk

Egenskaper

Polynomdivision

Om d är ett element i R[x] vars ledande koefficient är en enhet i R (ett inverterbart element) så finns för alla p i R[x] unika element k och r i R[x] sådana att k:s grad är strikt mindre än r:s grad och

p=kd+r.

Speciellt, om K är en kropp gäller ovan för alla element d i K[x].

Polynomringar i flera variabler

Ett polynom i flera variabler x1,...,xn med koefficienter i en ring R definieras analogt med polynom i en variabel, men notationen är omständligare. Vanligtvis definieras ett multiindex α=(α1,...,αn) som är en n-tippel av heltal αi och man skriver:

xα=k=1nxkαk=x1α1xnαn

och produkten xα kallas för ett monom av multigrad α. Ett polynom över R definieras då som en linjärkombination av monom med koefficienter i R:

p=αaαxα.

Med graden av ett monom xα avses:

|α|=k=1nαk.

En polynomring i n variabler över R, R[x1,...,xn är alla polynom med n variabler, dessa kan konstrueras genom att skapa polynomringar av polynomringar, exempelvis är R[x1,x2] isomorf med R[R[x]].

Egenskaper

Låt S=R[x1,...,xn] där R är en ring. Då gäller:

Generaliseringar

Polynomringar kan generaliseras på flera olika sätt.

Generaliserade exponenter

I en polynomring är exponenterna på variablerna heltal, men den avgörande egenskapen för att strukturen ska bli en ring är sambandet

xmxn=xm+n.

Dvs, att man kan lägga ihop exponenter, en operation som är associativ. En struktur med en binär operator som är associativ kallas för en monoid. Mängden av funktioner med nollskilda värden för endast ändligt många element från en monoid M till en ring R bildar en så kallad monoidring, R[N]. En polynomring i n variabler över R är en monoidring R[n], där n är monoiden n-tipplar av naturliga tal med addition som binär operator. Man kan utgå från definitionen av en monoidring och konstruera begreppet polynomring som ett specialfall. Andra val av monoider än n ger andra typer av monoidringar.

Formella potensserier

Istället för polynom kan man använda formella potensserier som sina ringelement, då man kan ha oändligt många nollskilda koefficienter. Addition sker komponentvis och multiplikation genom Cauchyprodukten.

Källor