Treklöverknut

Från testwiki
Hoppa till navigering Hoppa till sök
Överhandsknop och treklöverknut.

En treklöverknut är den matematiska motsvarigheten till en triquetra. Matematiska knutar studeras inom knutteori som tillhör den matematiska grenen topologi. Treklöverknuten är den mest grundläggande (icke-triviala) knuten och fås genom att göra en överhandsknop där man sedan fäster ihop ändarna. Treklöverknuten är en primknut vilket betyder att den kan användas för att bygga upp andra knutar analogt med hur primtalen bygger upp de positiva heltalen, men inte själv kan byggas upp från enklare knutar.

Fakta

Treklöverknuten består av en komponent och har 3 korsningar och 3 bågar. Det finns två varianter på knuten, vänsterhänt och högerhänt treklöverknut som är varandras spegelbilder. Dessa är oförenliga, d.v.s. om man har den ena kan man aldrig få den andra utan att först klippa sönder snöret. Det här gör att de tillhör skilda isotopiklasser och knutarna kallas chirala. Listings knut (eng. figure-eight knot) är däremot ett exempel där knuten och spegelbilden är isotopa, alltså den ena kan bli den andra genom enkel manipulation av snöret, knutarna kallas då achirala. Treklöverknuten kan definieras av kurvan som specificeras av de parametriska ekvationerna

x=sint+2sin2t
y=cost2cos2t
z=sin3t.

Vridning

Mall:Dubbel bild När man räknar ut vridningen (eng. writhe) hos en knut måste man räkna antalet positiva och negativa korsningar. För få positiva eller negativa korsningar måste man först tilldela knutdiagrammet en riktning. Vridningen för ett diagram definieras som summan av tecknen i alla korsningar alternativt antalet positiva korsningar minus antalet negativa korsningar. Vridningen av ett diagram D skrivs w(D). För treklöverknuten gäller att w(D)=±3 beroende på om det är en höger- eller vänsterhänt knut samt vilken orientering den har. För D= så fås w(D)=3 ty alla korsningar är negativa. Om vi däremot låter D ha motsatt orientering så blir alla korsningar positiva och vridningen blir då 3 istället.

Parentes-polynomet

Dv= Vänsterhänt treklöverknut

Dv=A7A3A5

Dh= Högerhänt treklöverknut

Dh=A7A3A5

Kauffman-polynomet

Dv= Vänsterhänt treklöverknut

f[Dv]=(A)9(A7A3A5)

Dh= Högerhänt treklöverknut

f[Dh]=(A)9(A7A3A5)

Jones-polynomet

Jones-polynomet VD kan kopplas samman med Kauffman-polynomet f[D] med formeln

VD(t)=f[D](t1/4).

Vilket för den vänsterhänta knuten ger

VDv=t1+t3t4

och för den högerhänta

VDh=t1+t3t4.

Referenser

  • Gilbert and Porter: Knots and Surfaces, Oxford University Press, 1994, kap. 1 & 2.
  • Weisstein, Eric W. "Trefoil Knot", MathWorld - A Wolfram Web Resource, 2013-05-13.