Skewes tal

Från testwiki
Hoppa till navigering Hoppa till sök

Skewes tal är det minsta heltal för vilket π(x) > li(x), där π(x) är antalet primtal mindre än x, och li(x) är den logaritmiska integralen li(x)=0x1ln(t)dt.

Talet eee79 (ungefär 10101034) kallas Skewes första tal. Under förutsättning att Riemannhypotesen är sann så visade Skewe 1933 att detta är en övre uppskattning av det - än så länge okända tal - som idag kallas Skewes tal.

En uppskattning av Skewes tal i vilken Riemannhypotesen inte används visade han 1955 vara 1010101000, det så kallade Skewes andra tal.

H. J. J. te Riele lyckades 1987, utan att använda Riemannhypotesen, skärpa Skewes uppskattning kraftigt genom att visa att 7×10370 är en övre gräns.

Se även

Mall:Mycket stora tal