Schläfli-symbol

Från testwiki
Hoppa till navigering Hoppa till sök
En dodekaeder har Schläfli-symbolen {5,3}, det vill säga att tre regelbundna femhörningar möts i varje hörn.

Mall:Dubbel bild Mall:Dubbel bild Schläfli-symbolen, uppkallad efter den schweiziske matematikern Ludwig Schläfli[1], är en notation på formen {p,q,r,}[2] som används för att beskriva regelbundna polygoner, polyedrar, polytoper och tessellationer.

Om p är ett naturligt tal betecknar Schläfli-symbolen {p} en regelbunden polygon, en p-hörning.

Är p ett oreducerbart[3] heltalsbråk p=ab betecknar {ab} en regelbunden stjärnpolygon med a hörn, där b anger till vilket hörn en sida ansluter. {52} är alltså en femhörnig stjärnpolygon (ett pentagram), medan {51}={5}, det vill säga en vanlig regelbunden femhörning.

Schläfli-symbolen {p,q} betecknar en kropp eller tessellation bestående av regelbundna p-hörningar (eller om det är ett bråk regelbundna stjärnpolygoner) där q anger hur många sådana som möts i varje hörn (eller snarare vilken vertexfigur[4] hörnet har).

En inversion av Schläfli-symbolen, det vill säga att elementen anges i omvänd ordning, ger den duala polytopen. Så anger exempelvis {4,3} en kub och {3,4} en oktaeder, som är kubens duala polyeder. På samma sätt är {6,3} tessellationen av planet med regelbundna sexhörningar och dess dual {3,6} tessellationen av planet med liksidiga trianglar. Om Schläfli-symbolen för en figur är symmetrisk under inversion innebär det att figuren är självdual; som tessellationen av planet i kvadrater {4,4} eller tetraedern {3,3}.

I två dimensioner finns det de tre nyssnämnda tessellationerna av planet med liksidiga trianglar {3,6}, kvadrater {4,4} och regelbundna sexhörningar {6,3}

De regelbundna tredimensionella polyedrarna utgörs av de fem konvexa platonska kropparna: tetraeder {3,3}, kub {4,3} och dess dual oktaeder {3,4}, samt dodekaeder {5,3} och dess dual ikosaeder {3,5}.[5] Därutöver finns det de fyra konvexa Kepler-Poinsot-kropparna: Liten stjärndodekaeder {52,5} med dualen stor dodekaeder {5,52} och stor stjärndodekaeder {52,3} med dualen stor ikosaeder {3,52}.[6]

Fyrdimensionella regelbundna polytoper har Schläfli-symbolen {p,q,r} där p och q, liksom i det tredimensionella fallet, betecknar att q stycken p-hörningar möts i varje hörn, medan r betecknar att r stycken {p,q}-volymer möts längs varje kant. En fyrdimensionell simplex betecknas sålunda {3,3,3} och en tesserakt {4,3,3}. En simplex är självdual, medan den duala polytopen till tesserakten, som har Schläfli-symbolen {3,3,4} och kallas 16-cell eller hexadekakor, består av tetraedrar, {3,3}, som fyra och fyra möts längs varje kant. Utöver dessa tre finns det tre ytterligare regelbundna konvexa polytoper av dimension fyra: den självduala 24-cellen och det duala paret 120-cellen och 600-cellen med Schläfli-symbolerna {3,4,3}, {5,3,3} respektive {3,3,5}.[7] Därutöver finns det tio regelbundna konkava stjärnpolytoper av dimension fyra.[6]

För regelbundna polytoper av högre dimension (n) tillkommer ett element i symbolen för varje ytterligare dimension. Detta element anger hur många objekt av dimension n1 som möts vid varje objekt av dimension n3. En n-dimensionell hyperkub har sålunda Schläfli-symbolen {4,3,...,3} med n2 treor. n-hyperkuben, dess dual (n-hyperoktaedern, n-ortoplexen eller n-korspolytopen) {3,3,...,3,4} och den självduala n-simplexen {3,3,...,3} är de enda regelbundna polytoperna av dimension fem eller högre.[7] De är samtliga konvexa.

Referenser och noter

  1. Schläfli införde notationen på sidan 44 i avhandlingen Theorie der vielfachen Kontinuität 1850-1852: "Wenn in der dreifachen Totalität, oder in Raume, ein reguläres Polyeder von regulären m Ecken umgeschlossen wird, deren je n in einer Ecke zusammenstoẞen, so wollen wir dasselbe mit dem Charakter (m, n) bezeichnen." Se Ludwig Schläfli, återtryck 2013, Gesammelte Mathematische Abhandlungen, vol. 1, sid. 169 ff., Mall:ISBN. Sidan 44 i Theorie der vielfachen Kontinuität motsvaras av sid. 212 i Gesammelte Mathematische Abhandlungen vol.1, 2013. Se även Ruth Kellerhals, 2010, Ludwig Schläfli – ein genialer Schweizer Mathematiker, Elemente der Mathematik 65, sid. 165-177(170-173).
  2. Schläfli använde dock vanliga parenteser. Klamrarna (och beteckningen "Schläfli symbol") infördes av H.S.M. Coxeter i dennes Regular Polytopes (Courier Corporation 1973), sid. 14: "The use of a symbol such as {p, q} (for a regular polygon with p-gonal faces, q at each vertex) is due to Schläfli, so we shall call it a Schläfli symbol."
  3. Som inte går att förenkla, det vill säga att täljare och nämnare är relativt prima.
  4. Vertexfiguren är den figur som bildas om man "skär av" hörnet. Skär man av ett hörn på en kub {4,3} får man en triangulär snittyta {3}, skär man av hörnet på en ikosaeder {3,5} får man en pentagonal snittyta {5} och skär man av det på en stor dodekaeder {5,52} får man ett pentagramformat snitt {52}.
  5. Mall:Webbref
  6. 6,0 6,1 Csaba D. Toth, Joseph O'Rourke, Jacob E. Goodman, 2004, Handbook of Discrete and Computational Geometry, Second Edition, sid. 435-437. Mall:ISBN.
  7. 7,0 7,1 Michael W. Davis, J. H. Coates, 2008, The Geometry and Topology of Coxeter Groups, sid. 95-96. Mall:ISBN.