Potensmängd

Från testwiki
Hoppa till navigering Hoppa till sök
Elementen av potensmängden {x, y, z} ordnade efter inklusivitet (Hassediagram)

Potensmängden (en. power set) till en mängd Mall:Mvar är mängden av alla delmängder till Mall:Mvar[1] inklusive den tomma mängden och mängden Mall:Mvar själv. Potensmängden till Mall:Mvar skrivs ofta 𝒫(M), P(M) eller 2M. Om Mall:Mvar är en ändlig mängd med Mall:Math element är antalet delmängder som kan bildas av Mall:Mvar lika med |𝒫(M)| = 2n.[2][3]

Att P(M) är en mängd närhelst M är en mängd, är innebörden i potensmängdsaxiomet.

Exempel

Om S är mängden {x, y, z}, är delmängderna av S

  • {} (också betecknad , tomma mängden)
  • {x}
  • {y}
  • {z}
  • {x, y}
  • {x, z}
  • {y, z}
  • {x, y, z}

och potensmängden av S={x,y,z} är

𝒫(S)={{},{x},{y},{z},{x,y},{x,z},{y,z},{x,y,z}}

I exemplet startade vi med en mängd med tre element och såg att potensmängden innehöll fler element, nämligen 23=8. Detta är inget unikt för denna mängd. Alla mängder, ändliga såväl som oändliga, har fler delmängder än de har element. Om vi bildar potensmängden till en mängd får vi alltså en med fler (2n) element, vilket är ett grundläggande argument för Cantors sats.

Se även

Referenser

  1. Potensmängd i Nationalencyklopedin.
  2. Weisstein, Eric W., Power Set på Wolfram MathWorld.
  3. Att |P(M)|=2n följer enkelt ur att om vi har en mängd N med ett element mindre än M, d.v.s. |N|=n-1, så är |P(M)|=2|P(N)|, eftersom "det n:te" elemetet antingen kan läggas till eller ej i varje mängd som ingår i P(N), och |P(Ø)|=1.