Oxalättiksyra

Från testwiki
Hoppa till navigering Hoppa till sök

Mall:Kemibox

Oxalättiksyra och α-ketoglutarsyra bildar viktiga länkar mellan metabolismen av kolhydrater (genom citronsyracykeln) och proteiner (genom aminosyrorna).[1]

Oxalättiksyra[2][3] är en dikarboxylsyra och keton. Den förekommer hos alla levande organismer och är en viktig del i cellernas ämnesomsättning[4], då den på samma gång är både slutprodukten och en del av starten i citronsyracykeln. Den bildar vidare en viktig länk mellan metabolismen av kolhydrater, genom rollen i citronsyracykeln, och proteiner, genom att den kan transamineras till asparaginsyra. Den förekommer även i glyoxylatcykeln och är ett viktigt mellanled i glukoneogenesen[1].

Oxalättiksyrans salter och anjoner kallas oxalacetat.

Roll i citronsyracykeln

I citronsyracykeln[5] bildas oxalättiksyra genom oxidation av äppelsyra (och reduktion av NAD+) enligt:[6]

äppelsyra + NAD+ → oxalättiksyra + NADH + H+

Reaktionen katalyseras av enzymet malatdehydrogenas.

Oxalättiksyran förbrukas sedan genom att den reagerar med acetyl-koenzym A och bildar citronsyra.[7]

oxalättiksyra + acetyl-CoA + H2O → citronsyra + CoA

Det enzym som katalyserar denna kondensation är citratsyntas.[8]

Dessa båda reaktioner ingår också i glyoxylatcykeln.[9]

Andra reaktioner

Pyrodruvsyra oxalättiksyra

Biosyntes av oxalättiksyra kan även ske från pyrodruvsyra, vätekarbonat och ATP, vilket kan ske i två steg via fosfoenolpyrodruvsyra (PEP):

Steg 1:[10] pyrodruvsyra + ATP fosfoenolpyrodruvsyra + ADP
Steg 2:[11] fosfoenolpyrodruvsyra + HCO3- + H+ → oxalättiksyra + Pi
Summa: pyrodruvsyra + HCO3- + H+ + ATP → oxalättiksyra + ADP + Pi

Steg 1 katalyseras av pyruvatkinas och steg 2 av fosfoenolpyruvatkarboxylas. Hela processen kan också ske i ett steg katalyserat av pyruvatkarboxylas[12] som aktiveras vid överskott av acetyl-CoA (vilket signalerar brist på oxalättiksyra).[1]

Steg 2 är det "inledande" steget i C4-cykeln, medan nedanstående "modifikation" av steg 1 (katalyserad av pyruvatfosfatdikinas) "avslutar" densamma:[13]

pyrodruvsyra + ATP + Pi → fosfoenolpyrodruvsyra + AMP + PPi

En "omvändning" av steg 2 ovan (en syntes av fosfoenolpyrodruvsyra från oxalättiksyra) kan också ske under katalys av fosfoenolpyruvatkarboxikinas (PEPCK) och konsumtion av ATP:[14]

oxalättiksyra + ATP → fosfoenolpyrodruvsyra + ADP + CO2

varefter man kan få pyrodruvsyra genom jämvikten i steg 1.

I glukoneogenesen hos växter, svampar, olika typer av alger, många bakterier med flera[15] sker syntesen av fosfoenolpyrodruvsyra från oxalättiksyra enligt ovan, men djur (och vissa bakterier) har en variant av PEPCK som i stället för ATP förbrukar GTP[16] på samma sätt, det vill säga:[17][18]

oxalättiksyra + GTP → fosfoenolpyrodruvsyra + GDP + CO2

Transaminering

Oxalättiksyra kan även produceras/konsumeras vid transaminering enligt:

asparaginsyra + α-ketoglutarsyra oxalättiksyra + glutaminsyra.[19]

Denna reaktion bildar en viktig länk mellan kolhydrat- och proteinmetabolismerna och den ingår också i C4-cykeln (i vänsterriktning)[20].

Oxalättiksyra från citronsyra

Under katalys av enzymet ATP-citrat(pro-S)-lyas kan oxalättiksyra bildas från citronsyra (således omvänt mot i citronsyracykeln), vilket är ett viktigt steg i fettsyrabiosyntesen.[21], enligt:[22]

citronsyra + ATP + CoA → oxalättiksyra + acetyl-CoA + ADP + Pi

Referenser

Se även