Legendres ekvation

Från testwiki
Version från den 8 september 2023 kl. 13.52 av imported>BoivieBot (Tar bort en stubbmall)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök

Inom matematiken är Legendres ekvation den diofantiska ekvationen

ax2+by2+cz2=0.

Ekvationen är uppkallad efter Adrien Marie Legendre som bevisade 1785 att ekvationen är lösbar i heltal x, y, z, inte alla noll, om och endast om −bc, −ca and −ab är kvadratiska rester modulo a, b och c, samt om a, b, c inte är noll är kvadratfria parvis relativt prima heltal som inte alla har samma tecken.

Källor