Fil:Sphere wireframe.svg
Från testwiki
Hoppa till navigering
Hoppa till sök
Storleken för denna PNG-förhandsvisning av denna SVG-fil: 400 × 400 pixlar. Andra upplösningar: 240 × 240 pixlar | 480 × 480 pixlar | 768 × 768 pixlar | 1 024 × 1 024 pixlar | 2 048 × 2 048 pixlar.
Originalfil (SVG-fil, standardstorlek: 400 × 400 pixlar, filstorlek: 8 kbyte)
Den här filen är från Wikimedia Commons och kan användas av andra projekt. Beskrivningen på dess filbeskrivningssida där visas nedan.
Sammanfattning
| BeskrivningSphere wireframe.svg |
English: Sphere wireframe - orthogonal projection of a sphere. The image shows lines, which are drawn as they were painted onto the surface of a sphere. The angular distance between two lines is 10°. The SVG file is created by the below C++-program, which calculates each edge of a line as an ellipse-bow. The backside of the sphere has an opacity of 0.25. The axis tilt is 52.5°. |
| Datum | |
| Källa | Eget arbete |
| Skapare | Geek3 |
| Andra versioner | Sphere wireframe 10deg 10r.svg |
Source Code
This image can be completely generated by the following source code. If you have the gnu compiler collection installed, the programm can be compiled by the following commands:
g++ sphere_wireframe.cpp -o sphere_wireframe
and run :
./sphere_wireframe > Sphere_wireframe.svg
It creates file Sphere_wireframe.svg in working directory. This file can be viewed using rsvg-view program :
rsvg-view Sphere_wireframe.svg
Here is cpp code in file : sphere_wireframe.cpp
/* sphere - creates a svg vector-graphics file which depicts a wireframe sphere
*
* Copyright (C) 2008 Wikimedia foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to:
* The Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor
* Boston, MA 02110-1301 USA
*/
/* The expressions in this code are not proven to be correct.
* Hence this code probably contains lots of bugs. Be aware! */
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstring>
using namespace std;
const double PI = 3.1415926535897932;
const double DEG = PI / 180.0;
/********************************* settings **********************************/
int n_lon = 18; // number of latitude fields (18 => 10° each)
int n_lat = 18; // half number of longitude fields (18 => 10° each)
double lon_offset = 2.5 * DEG; // offset of the meridians
double w = 52.5 * DEG; // axial tilt (0° => axis is perpendicular to image plane)
double stripe_grad = 0.5 * DEG; // width of each line
int image_size = 400; // width and height of the image in pixels
double back_opacity = 0.25; // opacity of the sphere's backside
char color[] = "#334070"; // color of lines
int istep = 2; // svg code indentation step
/*****************************************************************************/
double sqr(double x)
{
return(x * x);
}
// commands for svg-code:
void indent(int n, bool in_tag = false)
{
n *= istep;
if (in_tag) n += istep + 1;
for (int i = 0; i < n; i++) cout << " ";
}
void M()
{
cout << "M ";
}
void Z()
{
cout << "Z ";
}
void xy(double x, double y)
{
cout << x << ",";
cout << y << " ";
}
void arc(double a, double b, double x_axis_rot, bool large_arc, bool sweep)
{ // draws an elliptic arc
if (b < 0.5E-6)
{ // flat ellipses are not rendered properly => use line
cout << "L ";
}
else
{
cout << "A ";
cout << a << ","; // semi-major axis
cout << b << " "; // semi-minor axis
cout << x_axis_rot << " ";
cout << large_arc << " ";
cout << sweep << " ";
}
}
void circle(bool clockwise)
{
M();
xy(-1, 0);
arc(1, 1, 0, 0, !clockwise);
xy(1, 0);
arc(1, 1, 0, 0, !clockwise);
xy(-1, 0);
Z();
}
void start_svg_file()
{
cout << "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n";
cout << "<svg id=\"Sphere_wireframe\"\n";
cout << " version=\"1.1\"\n";
cout << " baseProfile=\"full\"\n";
cout << " xmlns=\"http://www.w3.org/2000/svg\"\n";
cout << " xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n";
cout << " width=\"" << image_size << "\"\n";
cout << " height=\"" << image_size << "\">\n\n";
cout << " <title>Sphere wireframe</title>\n\n";
cout << " <desc>\n";
cout << " about: http://commons.wikimedia.org/wiki/Image:Sphere_wireframe.svg\n";
cout << " rights: GNU Free Documentation license,\n";
cout << " Creative Commons Attribution ShareAlike license\n";
cout << " </desc>\n\n";
cout << " <g id=\"sphere\" transform=\"scale(" << 0.5 * image_size;
cout << ", " << -0.5 * image_size << ") translate(1, -1)\">\n";
}
void end_svg_file()
{
cout << " </g>\n</svg>\n";
}
int main (int argc, char *argv[])
{
// accept -lat and -lon as parameter
for (int i = 2; i < argc; i++)
{
if (isdigit(argv[i][0]) || (sizeof(argv[i]) > sizeof(char)
&& isdigit(argv[i][1])
&& (argv[i][0] == '.' || argv[i][0] == '-')))
{
if (strcmp(argv[i - 1], "-lon") == 0)
{
lon_offset = atof(argv[i]) * DEG;
}
if (strcmp(argv[i - 1], "-lat") == 0)
{
w = atof(argv[i]) * DEG;
}
}
}
double cosw = cos(w), sinw = sin(w);
double d = 0.5 * stripe_grad;
start_svg_file();
int ind = 2; // initial indentation level
indent(ind);
cout << "<g id=\"sphere_back\" transform=\"rotate(180)\" ";
cout << "opacity=\"" << back_opacity << "\">\n";
indent(++ind);
cout << "<g id=\"sphere_half\">\n";
// meridians
indent(++ind); cout << "<g id=\"meridians\"\n";
indent(ind++, true);
cout << "style=\"stroke:none; fill:" << color << "; fill_rule:evenodd\">\n";
double a = abs(cos(d));
for (int i_lon = 0; i_lon < n_lat; i_lon++)
{ // draw one meridian
double longitude = lon_offset + (i_lon * 180.0 / n_lat) * DEG;
double lon[2];
lon[0] = longitude + d;
lon[1] = longitude - d;
indent(ind);
cout << "<path id=\"meridian";
cout << i_lon << "\"\n";
indent(ind, true);
cout << "d=\"";
double axis_rot = atan2(-1.0 / tan(longitude), cosw);
if (sinw < 0)
axis_rot += PI;
double w2 = sin(longitude) * sinw;
double b = abs(w2 * cos(d));
double sinw1 = sin(d) / sqrt(1.0 - sqr(sin(longitude) * sinw));
if (abs(sinw1) >= 1.0)
{ // stripe covers edge of the circle
double w3 = sqrt(1.0 - sqr(w2)) * sin(d);
circle(false);
// ellipse
M();
xy(sin(axis_rot) * w3 - cos(axis_rot) * a,
-cos(axis_rot) * w3 - sin(axis_rot) * a);
arc(a, b, axis_rot / DEG, 0, 0);
xy(sin(axis_rot) * w3 + cos(axis_rot) * a,
-cos(axis_rot) * w3 + sin(axis_rot) * a);
arc(a, b, axis_rot / DEG, 0, 0);
xy(sin(axis_rot) * w3 - cos(axis_rot) * a,
-cos(axis_rot) * w3 - sin(axis_rot) * a);
Z();
}
else
{ // draw a disrupted ellipse bow
double w1 = asin(sinw1);
M();
xy(-cos(axis_rot + w1), -sin(axis_rot + w1));
arc(a, b, axis_rot / DEG, 1, 0);
xy(cos(axis_rot - w1), sin(axis_rot - w1));
arc(1, 1, 0, 0, 1);
xy(cos(axis_rot + w1), sin(axis_rot + w1));
arc(a, b, axis_rot / DEG, 0, 1);
xy(-cos(axis_rot - w1), -sin(axis_rot - w1));
arc(1, 1, 0, 0, 1);
xy(-cos(axis_rot + w1), -sin(axis_rot + w1));
}
Z();
cout << "\" />\n";
}
indent(--ind); cout << "</g>\n";
cout << endl;
// circles of latitude
indent(ind); cout << "<g id=\"circles_of_latitude\"\n";
indent(ind, true);
cout << "style=\"stroke:none; fill:" << color << "; fill_rule:evenodd\">\n";
ind++;
for (int i_lat = 1; i_lat < n_lon; i_lat++)
{ // draw one circle of latitude
double latitude = (i_lat * 180.0 / n_lon - 90.0) * DEG;
double lat[2];
lat[0] = latitude + d;
lat[1] = latitude - d;
double x[2], yd[2], ym[2];
for (int i = 0; i < 2; i++)
{
x[i] = abs(cos(lat[i]));
yd[i] = abs(cosw * cos(lat[i]));
ym[i] = sinw * sin(lat[i]);
}
double h[4]; // height of each point above image plane
h[0] = sin(lat[0] + w);
h[1] = sin(lat[0] - w);
h[2] = sin(lat[1] + w);
h[3] = sin(lat[1] - w);
if (h[0] > 0 || h[1] > 0 || h[2] > 0 || h[3] > 0)
{ // at least any part visible
indent(ind);
cout << "<path id=\"circle_of_latitude";
cout << i_lat << "\"\n";
indent(ind, true);
cout << "d=\"";
for (int i = 0; i < 2; i++)
{
if ((h[2*i] >= 0 && h[2*i+1] >= 0)
&& (h[2*i] > 0 || h[2*i+1] > 0))
{ // complete ellipse
M();
xy(-x[i], ym[i]); // startpoint
for (int z = 1; z > -2; z -= 2)
{
arc(x[i], yd[i], 0, 1, i);
xy(z * x[i], ym[i]);
}
Z();
if (h[2-2*i] * h[3-2*i] < 0)
{ // partly ellipse + partly circle
double yp = sin(lat[1-i]) / sinw;
double xp = sqrt(1.0 - sqr(yp));
if (sinw < 0)
{
xp = -xp;
}
M();
xy(-xp, yp);
arc(x[1-i], yd[1-i], 0,
sin(lat[1-i]) * cosw > 0, cosw >= 0);
xy(xp, yp);
arc(1, 1, 0, 0, cosw >= 0);
xy(-xp, yp);
Z();
}
else if (h[2-2*i] <= 0 && h[3-2*i] <= 0)
{ // stripe covers edge of the circle
circle(cosw < 0);
}
}
}
if ((h[0] * h[1] < 0 && h[2] <= 0 && h[3] <= 0)
|| (h[0] <= 0 && h[1] <= 0 && h[2] * h[3] < 0))
{
// one slice visible
int i = h[0] <= 0 && h[1] <= 0;
double yp = sin(lat[i]) / sinw;
double xp = sqrt(1.0 - yp * yp);
M();
xy(-xp, yp);
arc(x[i], yd[i], 0, sin(lat[i]) * cosw > 0, cosw * sinw >= 0);
xy(xp, yp);
arc(1, 1, 0, 0, cosw * sinw < 0);
xy(-xp, yp);
Z();
}
else if (h[0] * h[1] < 0 && h[2] * h[3] < 0)
{
// disrupted ellipse bow
double xp[2], yp[2];
for (int i = 0; i < 2; i++)
{
yp[i] = sin(lat[i]) / sinw;
xp[i] = sqrt(1.0 - sqr(yp[i]));
if (sinw < 0) xp[i] = -xp[i];
}
M();
xy(-xp[0], yp[0]);
arc(x[0], yd[0], 0, sin(lat[0]) * cosw > 0, cosw >= 0);
xy(xp[0], yp[0]);
arc(1, 1, 0, 0, 0);
xy(xp[1], yp[1]);
arc(x[1], yd[1], 0, sin(lat[1]) * cosw > 0, cosw < 0);
xy(-xp[1], yp[1]);
arc(1, 1, 0, 0, 0);
xy(-xp[0], yp[0]);
Z();
}
cout << "\" />\n";
}
}
for (int i = 0; i < 3; i++)
{
indent(--ind);
cout << "</g>\n";
}
indent(ind--);
cout << "<use id=\"sphere_front\" xlink:href=\"#sphere_half\" />\n";
end_svg_file();
}
Licensiering
Jag, upphovsrättsinnehavaren av detta verk, publicerar härmed det under följande licenser:
| Tillstånd ges att kopiera, distribuera och/eller modifiera detta dokument under villkoren i GNU Free Documentation License, Version 1.2 eller senare version publicerad av Free Software Foundation, utan oföränderliga avsnitt, framsidestexter eller baksidestexter. En kopia av licensen ingår i avsnittet GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Denna fil har gjorts tillgänglig under licenserna Creative Commons Erkännande-DelaLika 3.0 Unported, 2.5 Generisk, 2.0 Generisk och 1.0 Generisk.
- Du är fri:
- att dela – att kopiera, distribuera och sända verket
- att remixa – att skapa bearbetningar
- På följande villkor:
- erkännande – Du måste ge lämpligt erkännande, ange en länk till licensen och indikera om ändringar har gjorts. Du får göra det på ett lämpligt sätt, men inte på ett sätt som antyder att licensgivaren stödjer dig eller din användning.
- dela lika – Om du remixar, transformerar eller bygger vidare på materialet måste du distribuera dina bidrag under samma eller en kompatibel licens som originalet.
Du får själv välja den licens du vill använda.
Bildtexter
Ingen bildtext har definierats
Objekt som porträtteras i den här filen
motiv
Denna egenskap har ett värde, men det är okänt
november 2008
Filhistorik
Klicka på ett datum/klockslag för att se filen som den såg ut då.
| Datum/Tid | Miniatyrbild | Dimensioner | Användare | Kommentar | |
|---|---|---|---|---|---|
| nuvarande | 23 november 2008 kl. 17.10 | 400 × 400 (8 kbyte) | wikimediacommons>Geek3 | {{Information |Description={{en|1=Sphere wireframe - the image shows lines, which are drawn as they were painted onto the surface of a sphere. The distance between two lines is 10°. The svg file is created by the below c++-program, which calculates each |
Filanvändning
Följande sida använder den här filen: