Fil:Regular divisibility lattice.svg

Från testwiki
Hoppa till navigering Hoppa till sök
Originalfil (SVG-fil, standardstorlek: 1 363 × 809 pixlar, filstorlek: 13 kbyte)

Den här filen är från Wikimedia Commons och kan användas av andra projekt. Beskrivningen på dess filbeskrivningssida där visas nedan.

Sammanfattning

Beskrivning A Hasse diagram of divisibility relationships among regular numbers up to 400. As shown by the horizontal light red lines, the vertical position of each number is proportional to its logarithm. Inspired by similar diagrams in a paper by Kurenniemi [1].
Datum 14 mars 2007 (ursprungligt uppladdningsdatum)
Källa Överförd från en.wikipedia till Commons.
Skapare David Eppsteinengelska Wikipedia

Licensiering

Public domain Detta verk har gjorts tillgänglig som public domain av dess skapare, David Eppsteinengelska Wikipedia. Detta gäller globalt.
I vissa länder kan detta inte vara juridiskt möjligt; i så fall:
David Eppstein ger envar rätten att använda detta verk för alla ändamål, utan några villkor, förutom villkor som lagen ställer.

Source code

The Python source code for generating this image:

from math import log

limit = 400
radius = 17
margin = 4
xscale = yscale = 128
skew = 0.285

def A051037():
    yield 1
    seq = [1]
    spiders = [(2,2,0,0),(3,3,0,1),(5,5,0,2)]
    while True:
        x,p,i,j = min(spiders)
        if x != seq[-1]:
            yield x
            seq.append(x)
        spiders[j] = (p*seq[i+1],p,i+1,j)

def nfactors(h,p):
    nf = 0
    while h % p == 0:
        nf += 1
        h //= p
    return nf

seq = []
for h in A051037():
    if h > limit:
        break
    seq.append((h,nfactors(h,2),nfactors(h,3),nfactors(h,5)))

leftmost = max([k for h,i,j,k in seq])
rightmost = max([j for h,i,j,k in seq])
leftwidth = int(0.5 + log(5) * leftmost * xscale + radius + margin)
rightwidth = int(0.5 + log(3) * rightmost * xscale + radius + margin)
width = leftwidth + rightwidth
height = int(0.5 + log(limit) * yscale + 2*(radius + margin))

def place(h,i,j,k):
    # logical coordinates
    x = j * log(3) - k * log(5) + i * skew
    y = log(h)
    
    # physical coordinates
    x = (x*xscale) + leftwidth
    y = (-y*yscale) + height - radius - margin
    
    return (x,y)

print '''<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="%d" height="%d">''' % (width,height)

print '    <g style="fill:none;stroke:#ffaaaa;">'

l = 1
base = 1
while l <= limit:
    y = -yscale*log(l) + height - radius - margin
    print '        <path d="M0,%0.2fL%d,%0.2f"/>' % (y,width,y)
    l += base
    if l == 10*base:
        base = l

print "    </g>"
print '    <g style="fill:none;stroke-width:1.5;stroke:#0000cc;">'

def drawSegment(p,q):
    x1,y1=p
    x2,y2=q
    print '        <path d="M%0.2f,%0.2fL%0.2f,%0.2f"/>' % (x1,y1,x2,y2)

for h,i,j,k in seq:
    x,y = place(h,i,j,k)
    if i > 0:
        drawSegment(place(h//2,i-1,j,k),(x,y))
    if j > 0:
        drawSegment(place(h//3,i,j-1,k),(x,y))
    if k > 0:
        drawSegment(place(h//5,i,j,k-1),(x,y))

print "    </g>"
print '    <g style="fill:#ffffff;stroke:#000000;">'

for h,i,j,k in seq:
    x,y = place(h,i,j,k)
    print '        <circle cx="%0.2f" cy="%0.2f" r="%d"/>' % (x,y,radius)

# pairs of first value with size: size of that value
fontsizes = {1:33, 5:30, 10:27, 20:24, 100:20, 200:18}

for h,i,j,k in seq:
    x,y = place(h,i,j,k)
    if h in fontsizes:
        print "    </g>"
        print '    <g style="font-family:Times;font-size:%d;text-anchor:middle;">' % fontsizes[h]
        lower = fontsizes[h] / 3.
    print '        <text x="%0.2f" y="%0.2f">%d</text>' %(x,y+lower,h)
print "    </g>"
print "</svg>"

Ursprunglig uppladdningslogg

Den ursprungliga beskrivningssidan fanns här. Alla följande användarnamn finns på en.wikipedia.
  • 2007-03-14 05:08 David Eppstein 1363×809×0 (13167 bytes) A [[Hasse diagram]] of [[divisibility]] relationships among [[regular number]]s up to 400. Inspired by similar diagrams in a paper by Kurenniemi [http://www.beige.org/projects/dimi/CSDL2.pdf].

Bildtexter

Ingen bildtext har definierats

Objekt som porträtteras i den här filen

motiv

Filhistorik

Klicka på ett datum/klockslag för att se filen som den såg ut då.

Datum/TidMiniatyrbildDimensionerAnvändareKommentar
nuvarande13 mars 2010 kl. 03.57Miniatyrbild för versionen från den 13 mars 2010 kl. 03.571 363 × 809 (13 kbyte)wikimediacommons>David EppsteinFix fonts

Följande sida använder den här filen: