Lee Hwa Chungs sats

Från testwiki
Version från den 7 mars 2024 kl. 15.54 av imported>Adville (-stubb)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök

Inom matematiken är Lee Hwa Chungs sats ett resultat som säger att om M är en symplektisk mångfald med symplektisk form ω, och α är en differential k-formM som är invariant för alla Hamiltonska vektorfält, då är

  • α=0 om k är udda
  • α=c×ωk2 där c om k är jämn.

Källor

  • Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) Mall:ISBN. Graduate-level textbook on smooth manifolds.

Mall:Enwp