Skattningsfunktion
Inom matematisk statistik anger termen skattningsfunktion gradienten (vektorn av partiella derivator) av logaritmen av likelihood-funktionen.
Formellt sett, för en observation med likelihood-funktionen , ges skattningen av:
är en funktion av (de parametrar som ska uppskattas) och X (observationerna).
Egenskaper
Medelvärde
Under vissa förhållanden är väntevärdet av vid observationen x noll, givet (), lika med noll .
Om man skriver om likelihood-funktionen som en täthetsfunktion (L (θ, x) = f (x, θ)) får man att
som, under vissa förhållanden, kan förenklas till:
Varians
Variansen av skattningen kallas för Fisherinformationen, betecknat . Eftersom väntevärdet av skattningen är noll, ges variansen av skattningen av:
Se även
Noter och referenser
- Cox, D.R., Hinkley, D.V. (1974) Theoretical Statistics, Chapman & Hall. Mall:ISBN
- Mall:Bokref